Search results for "magnetic confinement fusion"

showing 10 items of 13 documents

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

2017

We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…

Astrophysical plasmasTokamakradio-frequency heatingCyclotronJoint European TorusPlasma heatingGeneral Physics and AstronomyFREQUENCY114 Physical sciences01 natural sciences7. Clean energyMagnetically confined plasmas010305 fluids & plasmaslaw.inventionIonPHYSICSPhysics and Astronomy (all)FUSIONMODE CONVERSIONlawPhysics::Plasma Physics0103 physical sciencesDielectric heating010306 general physicsPhysics[PHYS]Physics [physics]ta114Solar flare:Física [Àrees temàtiques de la UPC]Plasma dynamicsmulti-ion plasmasSettore FIS/01 - Fisica SperimentaleMagnetic confinement fusionPlasmaHE-3-RICH SOLAR-FLARESTècniques de plasmaJETCYCLOTRON RANGETOKAMAKPhysics::Space PhysicsAtomic physicsHE-3-RICH SOLAR-FLARES; MODE CONVERSION; CYCLOTRON RANGE; FUSION; JET; FREQUENCY; TOKAMAK; PHYSICS
researchProduct

Overview of the JET results

2015

Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in…

Chemical analysiMagnetic confinementEdge localized modeTokamak:Física [Ciências exactas e naturais]Nuclear engineeringplasma-facing componentsTungsten7. Clean energyiter-like walllaw.inventionheat loadsAlcator C-ModlawPlasma-facing componentalcator C-MODQCPhysicsJet (fluid)Thermally activatedDivertormagnetic confinementMagnetic confinement fusionTokamak deviceerosionCondensed Matter PhysicsChemical erosionPost mortem analysiCondensed Matter Physics; Nuclear and High Energy PhysicsBerylliumAtomic physicstokamaksTokamaksNuclear and High Energy Physicschemistry.chemical_elementImpurity accumulationCondensed Matter PhysicNuclear and High Energy Physics; Condensed Matter PhysicsTungstenFísica Física:Physical sciences [Natural sciences]divertorNuclear fusionNuclear and High Energy PhysicPhysics Physical sciencesGas fuel analysifuel retentionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)operationOrders of magnitudechemistryJETtransportMagnetic configuration
researchProduct

Core (XUV/VUV) and boundary (UV/vis/IR) plasma spectroscopy in fusion devices

2021

This contribution describes the basic applications of passive optical emission spectroscopy in the visible and far-UV region of electromagnetic radiation to diagnostics of the magnetic confinement fusion plasma. To simplify and condense the broad topic it presents the most common ways of analyzing the spectra of atoms, ions and molecules in fusion plasma and disseminating results of those analysis to the non-spectroscopists. It provides the reasons for choosing some particular regions, elements and charge states to determine the impurity content and plasma-surface interactions in MCF (Magnetic Confinement Fusion) reactor. Examples used in the contribution are predominantly from measurements…

FusionMaterials scienceTokamakGeneral Physics and AstronomyMagnetic confinement fusionPlasmaequipment and suppliesElectromagnetic radiationSpectral linelaw.inventionUltraviolet visible spectroscopyPhysics::Plasma PhysicslawExtreme ultravioletAtomic physicsThe European Physical Journal Plus
researchProduct

Efficiency investigation of a negative hydrogen ion beam production with the use of the gasdynamic ECR plasma source

2020

Abstract Negative hydrogen ion sources are of great demand in modern physics as injectors into accelerators and drivers for neutral beam injectors for fusion devices. It has been shown earlier that the use of the gasdynamic ECR discharge provides the opportunity to extract up to 80 mA/cm2 of negative ion current density. We studied experimentally the volumetric negative hydrogen ion production and vacuum ultraviolet emission in a gasdynamic ECR discharge. The high-density plasma was sustained by the pulsed 37 GHz / 100 kW gyrotron radiation in a magnetic configuration consisting of two consecutive simple mirror traps. The future prospects of the volumetric H− source based on the gasdynamic …

HistoryMaterials scienceMagnetic confinement fusionElectronPlasmaComputer Science ApplicationsEducationlaw.inventionIonlawMagnetGyrotronAtomic physicsCurrent densityBeam (structure)Journal of Physics: Conference Series
researchProduct

Major results from the first plasma campaign of the Wendelstein 7-X stellarator

2017

After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for t…

Magnetic confinementNuclear and High Energy PhysicsTechnology and EngineeringPlasma heatingCyclotron resonanceCONFINEMENT01 natural sciencesElectron cyclotron resonance010305 fluids & plasmaslaw.inventionPHYSICSNuclear physicsstellaratorcurrent drive; magnetic confinement; plasma heating; stellarator; Nuclear and High Energy Physics; Condensed Matter Physicslaw0103 physical sciencesddc:530010306 general physicstellaratorStellaratorPhysicsmagnetic confinementMagnetic confinement fusionplasma heatingcurrent drive;magnetic confinement;plasma heating;stellaratorPlasma530 PhysikCondensed Matter PhysicsTRANSPORTCurrent drivecurrent driveElectron temperaturePlasma diagnosticsAtomic physicsWendelstein 7-X[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]StellaratorNuclear Fusion
researchProduct

The power threshold of H-mode access in mixed hydrogen–tritium and pure tritium plasmas at JET with ITER-like wall

2022

The heating power to access the high confinement mode (H-mode), PLH, scales approximately inversely with the isotope mass of the main ion plasma species as found in (protonic) hydrogen, deuterium and tritium plasmas in many fusion facilities over the last decades. In first dedicated L–H transition experiments at the Joint European Torus (JET) tokamak facility with the ITER-like wall (ILW), the power threshold, PLH, was studied systematically in plasmas of pure tritium and hydrogen–tritium mixtures at a magnetic field of 1.8 T and a plasma current of 1.7 MA in order to assess whether this scaling still holds in a metallic wall device. The measured power thresholds, PLH, in Ohmically heated t…

Nuclear and High Energy Physics:Física::Física de fluids [Àrees temàtiques de la UPC]IsòtopsL–H transitionTritium plasmasPaper ; magnetic confinement fusion ; fusion plasmas ; L-H transition ; JET tokamak ; tritium plasmasTritiumCondensed Matter Physicsjet tokamakddc:magnetic confinement fusionJET tokamakPhysics::Plasma PhysicsFusion plasmastritium plasmasPhysics::Space PhysicsMagnetic confinement fusionPhysics::Accelerator Physicsfusion plasmasTokamaksl-h transitionNuclear Fusion
researchProduct

Modeling Non-Confined Coronal Flares: Dynamics and X-Ray Diagnostics

2001

Long-lasting, intense, stellar X-ray flares may approach conditions of breaking magnetic confinement and evolving in open space. We explore this hypothesis with hydrodynamic simulations of flares occurring in a non-confined corona: model flares are triggered by a transient impulsive heating injected in a plane-parallel stratified corona. The plasma evolution is described by means of a numerical 2-D model in cylindrical geometry R,Z. We explore the space of fundamental parameters. As a reference model, we consider a flare triggered by a heating pulse that would cause a 20 MK flare if delivered in a 40000 km long closed loop. The modeled plasma evolution is described. The X-ray emission, spec…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Magnetic confinement fusionFOS: Physical sciencesAstronomy and AstrophysicsPlasmaAstrophysicsLight curveAstrophysicsCoronaSpectral lineMagnetic fieldlaw.inventionSpace and Planetary SciencelawChromosphereFlare
researchProduct

X-ray emission from early-type stars in the Orion Nebula Cluster

2005

The X-ray properties of twenty ~1 Myr old O, B, and A stars of the Orion Trapezium are examined with data from the Chandra Orion Ultradeep Project (COUP). On the basis of simple theories for X-ray emission, we define two classes separated at spectral type B4: hotter stars have strong winds that may give rise to X-ray emission in small- or large-scale wind shocks, and cooler stars that should be X-ray dark due to their weaker winds and absence of outer convection zones where dynamos can generate magnetic fields. Only two of the massive stars show exclusively the constant soft-spectrum emission expected from the standard model for X-ray emission from hot stars involving many small shocks in a…

PhysicsConvection010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Magnetic confinement fusionFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesStandard ModelMagnetic fieldStarsSpace and Planetary Science0103 physical sciencesOrion NebulaCluster (physics)Astrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsDynamo
researchProduct

First observation of trapped high-field seeking ultracold neutron spin states

2011

Ultracold neutrons were stored in a volume, using a magnetic dipole field shutter. Radial confinement was provided by material walls. Low-field seeking neutrons were axially confined above the magnetic field. High-field seeking neutrons are trapped inside the magnetic field. They can systematically shift the measured neutron lifetime to lower values in experiments with magnetic confinement. ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445

PhysicsNeutron lifetimeNuclear and High Energy PhysicsSpin statesCondensed matter physicsUltracold neutron storage010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryMagnetic confinement fusionUltracold neutrons; Ultracold neutron storage; Neutron lifetime[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences3. Good healthMagnetic fieldShutter0103 physical sciencesUltracold neutronsNeutron010306 general physicsAxial symmetryNuclear ExperimentUltracold neutronsMagnetic dipolePhysics Letters B
researchProduct

First results with the yin-yang type electron cyclotron resonance ion source

2007

Abstract Highly charged heavy-ion beams are often produced with Electron Cyclotron Resonance Ion Sources (ECRIS). The so-called conventional minimum-B ECRIS design includes two solenoid magnets and a multipole magnet (usually a hexapole). A minimum-B configuration can also be formed with “yin-yang” (“baseball”) type coils. Such a magnetic field configuration has been extensively tested in magnetic fusion experiments but not for the production of highly charged heavy ions. The application of the afore-mentioned coil structure to the production of multiply charged ion beams was studied. In this paper we present a design of a yin-yang type ion source known as the ARC-ECRIS and some preliminary…

PhysicsNuclear and High Energy PhysicsPhysics::Plasma PhysicsARC-ECRISCyclotron resonanceMagnetic confinement fusionAtomic physicsIon gunInstrumentationIon sourceElectron cyclotron resonanceIon cyclotron resonanceFourier transform ion cyclotron resonanceNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct